Selected Solutionsfor Chapter 13:
Red-Black Trees

Solution to Exercise 13.1-4

After absorbing each red node into its black parent, theadegf each node black
node is

» 2, if both children were already black,
» 3, if one child was black and one was red, or
« 4, if both children were red.

All leaves of the resulting tree have the same depth.

Solution to Exercise 13.1-5

In the longest path, at least every other node is black. Iistioetest path, at most
every node is black. Since the two paths contain equal nusyfdrlack nodes, the
length of the longest path is at most twice the length of tloetslst path.

We can say this more precisely, as follows:

Since every path contains bh black nodes, even the shortest path freno a
descendant leaf has length at least)h By definition, the longest path from
to a descendant leaf has length hefght Since the longest path has(lsh black
nodes and at least half the nodes on the longest path are (ipgqkoperty 4),
bh(x) > heightx)/2, so

length of longest patk= heigh(x) < 2 - bh(x) < twice length of shortest path

Solution to Exercise 13.3-3

In Figure 13.5, noded, B, and D have black-height + 1 in all cases, because
each of their subtrees has black-heighand a black root. Nod€ has black-
heightk + 1 on the left (because its red children have black-height 1) and
black-height + 2 on the right (because its black children have black-héight).

13-2 Selected Solutions for Chapter 13: Red-Black Trees

In Figure 13.6, noded, B, andC have black-height + 1 in all cases. At left and
in the middle, each off’'s and B’s subtrees has black-heightand a black root,
while C has one such subtree and a red child with black-hdightl. At the right,
each ofA’'s and C’s subtrees has black-heightand a black root, while3’s red
children each have black-height+ 1.

Case 2 Case 3

Property 5 is preserved by the transformations. We have staiwve that the
black-height is well-defined within the subtrees pictursaproperty 5 is preserved
within those subtrees. Property 5 is preserved for the toe¢aming the subtrees
pictured, because every path through these subtrees thcatdgbutesk + 2 black
nodes.

Solution to Problem 13-1

a. When inserting key, all nodes on the path from the root to the added node
(a new leaf) must change, since the need for a new child pgint@agates up
from the new node to all of its ancestors.

When deleting a node, let be the node actually removed ande the node
given to the delete procedure.

» If z has at most one child, it will be spliced out, so that all atmssofz will
be changed. (As with insertion, the need for a new child goiptopagates
up from the removed node.)

* If z has two children, then its successomill be spliced out and moved
to z's position. Therefore all ancestors of battand y must be changed.

Sdlected Solutions for Chapter 13: Red-Black Trees 13-3

Because is an ancestor of, we can just say that all ancestorsyofnust be
changed.

In either casey’s children (if any) are unchanged, because we have assumed
that there is no parent attribute.

b. We assume that we can call two procedures:

* MAKE-NEW-NODE(k) creates a new node whokey attribute has valué
and withleft andright attributesniL, and it returns a pointer to the new node.

* CoPY-NODE(x) creates a new node whossy, |eft, andright attributes have
the same values as those of nogend it returns a pointer to the new node.

Here are two ways to write ERSISTENFTREE-INSERT. The first is a version

of TREE-INSERT, modified to create new nodes along the path to where the
new node will go, and to not use parent attributes. It rettlragoot of the new
tree.

PERSISTENFTREE-INSERT(T, k)

z = MAKE-NEW-NODE(k)
new-root = CoPY-NODE(T.root)

y = NIL
X = new-root
while x # NIL
y =X
if z.key < x.key
x = COPY-NODE(x.left)
y.left = x
elsex = CoPY-NODE(x.right)
y.right = x
if y==NIL
new-root = z
elseif z.key < y.key
y.left =z
else y.right = z

return new-root

The second is a rather elegant recursive procedure. Tl icadl should have
T.root as its first argument. It returns the root of the new tree.

PERSISTENFTREE-INSERT(r, k)
if r ==NIL
x = MAKE-NEW-NODE(k)
elsex = CopPY-NODE(r)
if k <r.key
x.left = PERSISTENFTREE-INSERT(r. l€ft, k)
else x.right = PERSISTENFTREE-INSERT(r.right, k)
return x

13-4

Selected Solutions for Chapter 13: Red-Black Trees

C. Like TREE-INSERT, PERSISTENFTREE-INSERT does a constant amount of

work at each node along the path from the root to the new nodece She
length of the path is at most it takesO (h) time.

Since it allocates a new node (a constant amount of spaceafdrancestor of
the inserted node, it also nee@h) space.

. If there were parent attributes, then because of the new ewety node of the

tree would have to be copied when a new node is inserted. Telsgabserve
that the children of the root would change to point to the neet,rthen their
children would change to point to them, and so on. Since e nodes, this
change would cause insertion to cre@fe:) new nodes and to take(n) time.

. From parts (a) and (c), we know that insertion into a persidbénary search

tree of height:, like insertion into an ordinary binary search tree, takessty
case timeD(h). Ared-black tree has = O(Ign), so insertion into an ordinary
red-black tree take®(Ig n) time. We need to show that if the red-black tree is
persistent, insertion can still be donedi(Ig ») time. To do this, we will need
to show two things:

* How to still find the parent pointers we needdn(1) time without using a
parent attribute. We cannot use a parent attribute becapsesstent tree
with parent attributes usé3(rn) time for insertion (by part (d)).

* That the additional node changes made during red-blacloperations (by
rotation and recoloring) don’t cause more thafg ») additional nodes to
change.

Each parent pointer needed during insertion can be foudt 1n time without
having a parent attribute as follows:

To insert into a red-black tree, we call RBHHERT, which in turn calls RB-
INSERFFIXUP. Make the same changes to RRsERTas we made to REE-
INSERT for persistence. Additionally, as RBv$ERT walks down the tree to
find the place to insert the new node, have it build a stack @hibdes it tra-
verses and pass this stack to RBSERTFIXUP. RB-INSERTFFIXUP needs
parent pointers to walk back up the same path, and at any givenit needs
parent pointers only to find the parent and grandparent aidkle it is working
on. As RB-NSeERTFIXxupP moves up the stack of parents, it needs only parent
pointers that are at known locations a constant distancg swthe stack. Thus,
the parent information can be found @(1) time, just as if it were stored in a
parent attribute.

Rotation and recoloring change nodes as follows:

* RB-INSERTFIXUP performs at most 2 rotations, and each rotation changes
the child pointers in 3 nodes (the node around which we rptagt node’s
parent, and one of the children of the node around which vegeptThus, at
most 6 nodes are directly modified by rotation during REBS#RFFIXUP. In
a persistent tree, all ancestors of a changed node are ¢epi&B-INSERT
FiIXup’s rotations takeO(Ign) time to change nodes due to rotation. (Ac-
tually, the changed nodes in this case share a siglg n)-length path of
ancestors.)

Sdlected Solutions for Chapter 13: Red-Black Trees 13-5

* RB-INSERTFIXUP recolors some of the inserted node’s ancestors, which
are being changed anyway in persistent insertion, and sbiitren of an-
cestors (the “uncles” referred to in the algorithm des@ipt There are
at mostO(Ilgn) ancestors, hence at mo8tlIgn) color changes of uncles.
Recoloring uncles doesn’t cause any additional node clzamge to persis-
tence, because the ancestors of the uncles are the same(andestors of
the inserted node) that are being changed anyway due tsierse. Thus,
recoloring does not affect th@(lg ») running time, even with persistence.

We could show similarly that deletion in a persistent trem ahkes worst-case
time O(h).

* We already saw in part (a) thét(#) nodes change.

* We could write a persistent RBHLETE procedure that runs i@ (h) time,
analogous to the changes we made for persistence in inseRid to do so
without using parent pointers we need to walk down the tréledmode to be
deleted, to build up a stack of parents as discussed abowugstation. This
is a little tricky if the set’s keys are not distinct, becauserder to find the
path to the node to delete—a particular node with a given keg-have to
make some changes to how we store things in the tree, so thiatate keys
can be distinguished. The easiest way is to have each kewntséeond part
that is unique, and to use this second part as a tiebreaker edrmaparing
keys.

Then the problem of showing that deletion needs an{ig ») time in a persis-
tent red-black tree is the same as for insertion.

* As for insertion, we can show that the parents needed by RBEDE-
Fixup can be found irO (1) time (using the same technique as for insertion).

* Also, RB-DELETE-FIXUP performs at most 3 rotations, which as discussed
above for insertion require@(Ig n) time to change nodes due to persistence.
It also doesD(Ig n) color changes, which (as for insertion) take otlyg n)
time to change ancestors due to persistence, because thienahtopied
nodes isO(lgn).

